AP Calculus – Integral Applications

Instructional Focus 5.1: The definite integral of a function over an interval is a mathematical tool with many interpretations and application involving accumulation.

CCSS & Example	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Use and interpret the definite integral to solve problems in various contexts. (LO 3.4A, LO 3.4B, LO 3.4E)	Can Extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting	 Do ALL of the following: Average value of a function over a given interval Accumulation of a rate of change Net change over a given interval Within various contexts 	 Do ALL of the following: Average value of a function over a given interval Accumulation of a rate of change Net change over a given interval 	 Do TWO of the following: Average value of a function over a given interval Accumulation of a rate of change Net change over a given interval 	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Apply definite integrals to problems involving motion. (LO 3.4C, LO 3.4B)	 Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Do ALL of the following: Displacement Total distance traveled Initial value Average value	Do THREE of the following: Displacement Total distance traveled Initial value Average value	Do TWO of the following: Displacement Total distance traveled Initial value Average value	
Apply definite integrals to problems involving area and volume. (LO 3.4D)		 Do ALL of the following: Area of a region Volume by revolution Volume by cross section 	 Do TWO of the following: Area of a region Volume by revolution Volume by cross section 	 Do ONE of the following: Area of a region Volume by revolution Volume by cross section 	

AP Calculus – Integral Applications

Instructional Focus 5.2: Antidifferentiation is an underlying concept involved in solving separable differential equations. Solving separable differential equations involves determining a function or relation given its rate of change.

CCSS & Example	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Analyze differential equations		Sketch a slope field for a given	Sketch a slope field for a given	Sketch a slope field for a given	
solutions		differential equation and	differential equation and	differential equation and	
(LO 3.5A, LO 2.3E)	Can Extend thinking	Find a particular solution of a	Find a general solution of a	Separate variables of a	
	including tasks that may	differential equation	differential equation	differential equation	
Interpret, create, and solve	involve one of the				
differential equations from	following:				Little evidence
(LO 3.5B)	Designing				of reasoning or
	Connecting				solve the
Estimate solutions to	Synthesizing				problem
(I O 2.3F)	Applying				Descent
(10 100)	Justifying Critiquing				Does not meet
	Analyzing				level 1
Interpret, create, and solve,	Creating	Find the carrying capacity of a	Find the carrying capacity of a	Find the carrying capacity of a	
differential equations from	Proving	logistic differential equation	logistic differential equation	logistic differential equation.	
(including logistic growth)		standard form and determine	standard form.		
(EK 3.5B2)		when the rate of change is the			
		greatest.			