AP Calculus - Limits

Instructional Focus: EU 1.1 The concept of a limit can be used to understand the behavior of functions.

CCSS & Example	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Estimate limits of functions. (LO 1.1B) 1.1.A	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing	Find a limit graphically and numerically using proper notation with all of the following: Limits One sided Limits Limits at infinity Infinite limits Limits that don't exist and interpret the behavior of Functions	 Find a limit graphically and numerically using proper notation with four of the following: Limits One sided Limits Limits at infinity Infinite limits Limits that don't exist and interpret the behavior of Functions 	 Find a limit graphically and numerically using proper notation with three of the following: Limits One sided Limits Limits at infinity Infinite limits Limits that don't exist 	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Determine limits of functions. (LO 1.1C) LO 1.1D)	 Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	 Determine limits of functions using correct notation with all of the following Algebraic manipulation Algebraic rules (sum, difference, product, quotients) Composite Functions Trig Functions and interpret the behavior of Functions 	 Determine limits of functions using correct notation with three of the following Algebraic manipulation Algebraic rules (sum, difference, product, quotients) Composite Functions Trig Functions and interpret the behavior of Functions 	 Determine limits of functions using correct notation with two of the following Algebraic manipulation Algebraic rules (sum, difference, product, quotients) Composite Functions Trig Functions and interpret the behavior of Functions 	

AP Calculus - Limits

Instructional Focus: EU 1.2 Continuity is a key property of functions that is defined using limits.

CCSS & Example	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Analyze functions for intervals of continuity or points of discontinuity. (LO 1.2A) (LO 1.2B) *Assessed in another unit	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying	 Determine type of discontinuity Determine if IVT, EVT*, and MVT* are applicable Identify functions that are continuous in their domain 	 Do three of the following: Apply continuity in terms of the three part definition Determine type of discontinuity Determine if IVT, EVT*, and MVT* are applicable Identify functions that are continuous in their domain 	 Do two of the following: Apply continuity in terms of the three part definition Determine type of discontinuity Determine if IVT, EVT*, and MVT* are applicable Identify functions that are continuous in their domain 	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Definition of Derivative (2.1A)	 Justifying Critiquing Analyzing Creating Proving 	Apply the definition of derivative using correct notation to algebraically find the derivative of a function in general and at a point.	Apply the definition of derivative using correct notation to algebraically find the derivative of a function in general or at a point.	Use substitution to set up the definition of derivative in general or at a point.	