Probability

Instructional Focus: Calculate expected values and use them to solve problems

CCSS	4 - Mastery	3 - Proficient	2 - Basic	1 - Below Basic	$\mathrm{O} \text { - No }$ Evidence
Representing probability distributions (S.MD.1)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Define a random variable for a quantity of interest Assign a numerical value to each event in a sample space Graph the corresponding probability distribution using the same graphical displays as for data distributions.	Assign a numerical value to each event in a sample space Graph the corresponding probability distribution using the same graphical displays as for data distributions.	Graph a given probability distribution	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Calculating and interpreting expected values (S.MD.2)	- Designing - Connecting - Synthesizing - Applying - Justifying	Calculate and interpret the expected value of a random variable and use the information to make a decision	Calculate the expected value of a random variable and use the information to make a decision	Calculate the expected value of a random variable	
Developing probability distributions and finding expected values (S.MD.3, S.MD.4)	- Critiquing - Analyzing - Creating - Proving	Develop a probability distribution for a random variable for a sample space of - theoretical probabilities - experimental probabilities and find the expected value	Develop a probability distribution for a random variable for a sample space of - theoretical probabilities - experimental probabilities	Calculate probabilities for a sample space of - theoretical probabilities - experimental probabilities	

S.MD. 1 Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.
S.MD. 2 Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.
S.MD. 3 Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; find the expected value
S.MD. 4 Develop a probability distribution for a random variable defined for a sample space in which probabilities are assigned empirically; find the expected value.

