Circles

7.1-7.2 Investigate circles and apply formulas

G.C. 1	Prove that all circles are similar.
G.C. 2	Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
G.C. 3	Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
G.C. 4	Construct a tangent line from a point outside a given circle to the circle.
G.C. 5	Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
G.GMD. 1Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments	

Circles

7.3 Investigate and interpret circle equations.

	4 - Mastery	3 - Proficient	2 - Basic	1 - Below Basic	$\mathrm{O} \text { - No }$ Evidence
Derive the equation (G.GPE.1, GPE.4)	Can extend thinking beyond the standard, including tasks that may involve one of the following: - Designing - Connecting - Synthesizing - Applying - Justifying - Critiquing - Analyzing - Creating - Proving	Explain why the Pythagorean Theorem can be used to derive the equation of a circle, given the center and radius Complete the square when a is greater than $\underline{1}$ to find the center and radius of a circle when given an equation of a circle. Justify whether a point lies on a circle given the center and a point on the circle.	Use the Pythagorean theorem to find the equation of a circle Complete the square when a equals 1 to find the center and radius of a circle when given an equation of a circle. Determine whether a point lies on a circle given the center of the circle and the radius.	Use the Pythagorean theorem to find the radius of a circle Given guided steps, complete the square when a equals 1 to find the center and radius of a circle when given an equation of a circle. Given the equation determine whether a point lies on a circle.	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

G.GPE. 1 Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
G.GPE. 4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point $(0,2)$.

Circles

8.1 Concurrency in Triangles

	4 - Mastery	3 - Proficient	2 - Basic	1 - Below Basic	$0 \text { - No }$ Evidence
Concurrency in Triangles (G.CO.10)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Prove the medians of a triangle meet at a point.	Use constructions to show the medians of a triangle meet at a point.	Identify the properties of a centroid	Little evidence of reasoning or application to solve the problem
Constructions (G.C.3)	following: - Designing - Connecting - Synthesizing - Applying - Justifying - Critiquing - Analyzing - Creating - Proving	Construct both of the following: - the inscribed circle of a triangle. - the circumscribed circle of a triangle.	Construct one of the following: - the inscribed circle of a triangle. - the circumscribed circle of a triangle.	Identify the following: - incenter is the intersection of the angle bisectors - circumcenter is the intersection perpendicular bisectors	Does not meet the criteria in a level 1

G.C. 3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
G.CO.10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

