Instructional Focus: Represent and calculate with vectors

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Represent vectors (N.VM.1)	Meets <u>all</u> of the criteria in a Level 3 <u>Justify solutions and</u> <u>critique the</u> <u>reasoning of others</u>	Use appropriate symbols for vectors and their magnitude, represent vector quantities by directed line segments, <u>and find</u> <u>the magnitude and direction of</u> <u>vector quantities.</u>	Use appropriate symbols for vectors and their magnitude and <u>represent vector quantities</u> <u>by directed line segments</u> .	Use appropriate <u>symbols for</u> vectors and their magnitude.	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Solve problems with vectors (N.VM.3)		Solve problems involving velocity and other quantities by converting given direction and magnitude quantities into component vectors, calculate the resultant vector, <u>and find</u> <u>the resultant direction and</u> <u>magnitude or the angle</u> <u>between vectors</u>	Solve problems involving velocity and other quantities by converting given direction and magnitude quantities into component vectors <u>, and</u> <u>calculate the resultant vector</u>	Solve problems involving velocity and other quantities by <u>converting given direction</u> <u>and magnitude quantities into</u> <u>component vectors</u>	
Operations with vectors (N.VM.2, N.VM.4, N.VM.5)		Find the components of a vector by subtracting coordinates Add, subtract vectors graphically and component-wise, <u>and</u> <u>determine the magnitude and</u> <u>direction</u> Multiply a vector by a scalar and <u>determine the magnitude</u> <u>and direction</u>	Find the components of a vector by subtracting coordinates Add, subtract vectors graphically <u>and</u> component-wise Multiply a vector by a scalar	Find the components of a vector by subtracting coordinates Add, subtract vectors graphically <u>or</u> component-wise Multiply a vector by a scalar	

Pre-Calculus – Coordinate Systems

- N.VM.1 (+) Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., v, |v|, ||v||, v).
- N.VM.3 (+) Solve problems involving velocity and other quantities that can be represented by vectors.
- N.VM.2 (+) Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.
- N.VM.4 (+) Add and subtract vectors.

a. Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes. b. Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.

c. Understand vector subtraction v - w as v + (-w), where -w is the additive inverse of w, with the same magnitude as w and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.

N.VM.5 (+) Multiply a vector by a scalar.

a. Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as c(vx, vy) = (cvx, cvy).

b. Compute the magnitude of a scalar multiple $c\mathbf{v}$ using $||c\mathbf{v}|| = |c|v$. Compute the direction of $c\mathbf{v}$ knowing that when $|c|v \neq 0$, the direction of $c\mathbf{v}$ is either along \mathbf{v} (for c > 0) or against \mathbf{v} (for c < 0).

Instructional Focus: Represent and calculate complex numbers

	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Represent on the complex	Meets <u>all</u> of the	Represent complex numbers on	Represent complex numbers on	Represent complex numbers on	Little evidence of
plane (N.CN.4)	criteria in a Level 3	the complex plane in rectangular	the complex plane in	the complex plane	reasoning or
		and polar form, and explain why	rectangular <u>and polar form</u>	in rectangular form	application to solve the
		the rectangular and polar forms			problem
	Justify solutions and	of a given complex number			
	critique the	represent the same number			
	reasoning of others				Does not meet the
Operations of Vectors in		Represent and compute addition	Represent and compute addition	Represent and compute	criteria in a level 1
Polar Form (N.CN.3,		and subtraction_of complex	and subtraction_of complex	addition and subtraction of	
N.CN.5)		numbers geometrically on the	numbers geometrically on the	complex numbers geometrically	
		complex plane	complex plane	on the complex plane	
		Represent and compute	Represent and compute		
		multiplication and division, in	multiplication and division, in		
		polar form, of complex numbers	polar form, of complex		
		geometrically on the complex	numbers geometrically on the		
		plane	<u>complex plane</u>		
		Poprocent and compute the			
		nower and roots of complex			
		pumbers, in polar form			
Calculate distance and		Calculate the distance between	Calculate the difference	Calculate the midpoint of a	1
midpoint (N.CN.6)		numbers in the complex	between numbers in the	segment in the complex plane	
		plane as the modulus of the	complex plane, and calculate	as the average of the numbers	
		difference, and calculate the	the midpoint of a segment in the	at its endpoints	
		midpoint of a segment in the	complex plane as the average of		
		complex plane as the average of	the numbers at its endpoints		
		the numbers at its endpoints	······		

Pre-Calculus – Coordinate Systems

- N.CN.4 (+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers), and explain why the rectangular and polar forms of a given complex number represent the same number.
- N.CN.3 (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of complex numbers.
- N.CN.5 (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers geometrically on the complex plane; use properties of this representation for computation. For example, $(-1 + \sqrt{3} i)^3 = 8$ because $(-1 + \sqrt{3} i)$ has modulus 2 and argument 120°.
- N.CN.6 (+) Calculate the distance between numbers in the complex plane as the modulus of the difference, and the midpoint of a segment as the average of the numbers at its endpoints.