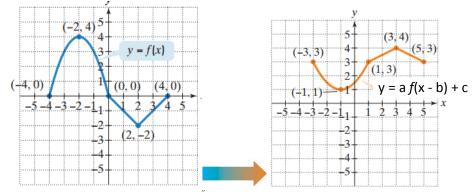
## Instructional Focus: Compose and transform functions

|                                                  | 4 – Mastery                                                                                                                                                            | 3 – Proficient                                                                                                                                                                                                                                                    | 2 - Basic                                                                                                                                                                                                                        | 1 – Below Basic                                                                                                                                                                                                 | 0 – No Evidence                                                           |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Identify and Find<br>Transformations<br>(F.BF.3) | Can extend thinking<br>beyond the standard,<br>including tasks that may<br>involve one of the<br>following:                                                            | Identify the effect on a graph by<br>replacing $f(x)$ with <u>more than</u><br><u>two</u> transformations:<br>f(x) + k, $k f(x)$ ,<br>f(kx), $f(x + k)$ for specific positive                                                                                     | Identify the effect on a graph by<br>replacing $f(x)$ with <u>two</u><br>transformations:<br>f(x) + k, $k f(x)$ ,<br>f(kx), $f(x + k)$ for specific positive                                                                     | Identify the effect on a graph by<br>replacing $f(x)$ with a <u>single</u><br>transformation:<br>f(x) + k, $k f(x)$ ,<br>f(kx), $f(x + k)$ for specific positive                                                | Little evidence of<br>reasoning or<br>application to solve<br>the problem |
|                                                  | <ul> <li>Designing</li> <li>Connecting</li> <li>Synthesizing</li> <li>Applying</li> <li>Justifying</li> <li>Critiquing</li> <li>Analyzing</li> <li>Creating</li> </ul> | and negative values of k<br>Given the graph of a function<br>and <u>more than two</u><br><u>transformations</u> , find the values<br>of the constants and coefficients<br><u>Given a partial graph</u> , complete<br>the graph for both even and odd<br>functions | and negative values of k<br>Given the graph of a function<br>and <u>two transformations</u> , find<br>the values of the constants and<br>coefficients<br>Recognize even and odd<br>functions from<br>graphs <u>and equations</u> | and negative values of k<br>Given the graph of a function<br>and a <u>single transformation</u> , find<br>the value of the constant or<br>coefficient<br>Recognize even and odd<br>functions <u>from graphs</u> | Does not meet the criteria in a level 1                                   |
| Compose Functions<br>(F.BF.1c)                   | - • Proving                                                                                                                                                            | Evaluate the composition of 2<br>functions <u>in context of a</u><br><u>situation</u>                                                                                                                                                                             | Evaluate the <u>composition of 2</u><br><u>functions</u>                                                                                                                                                                         | Evaluate a function for a given<br>value and use that result<br>to <u>evaluate</u> a second function                                                                                                            |                                                                           |

**F.BF.3 (+)** Identify the effect on the graph of replacing *f*(*x*) by *f*(*x*) + *k*, *k f*(*x*), *f*(*kx*), and *f*(*x* + *k*) for specific values of *k* (both positive and negative); find the value of *k* given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

**F.BF.1c** Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon as a function of time.


### Sample Problems

Describe the changes to a function f(x) that would occur in the given function. g(x) = -2f(13x+4)-5

Complete the given graph so that the function would be a) odd b) even



Given a parent function and the transformed graph, find the values of a, b and c.



2. A consumer advocacy company conducted a study to research the pricing of fruits and vegetables. They collected data on the size and price of produce items, including navel oranges. They found that, for a given chain of stores, the price of oranges was a function of the weight of the oranges, p = f(w).

| W<br>weight in pounds        | 0.2  | 0.25 | 0.3  | 0.4  | 0.5  | 0.6  | 0.7  |
|------------------------------|------|------|------|------|------|------|------|
| <i>p</i><br>price in dollars | 0.26 | 0.32 | 0.39 | 0.52 | 0.65 | 0.78 | 0.91 |

The company also determined that the weight of the oranges measured was a function of the radius of the oranges, w = g(r).

| r<br>radius in inches        | 1.5  | 1.65 | 1.7  | 1.9  | 2   | 2.1  |
|------------------------------|------|------|------|------|-----|------|
| <i>w</i><br>weight in pounds | 0.38 | 0.42 | 0.43 | 0.48 | 0.5 | 0.53 |

Use the table to evaluate f(g(2)), and interpret this value in context.

### Instructional Focus: Produce inverse functions

|                    | 4 – Mastery                                                                                                                                                                                                                                                                              | 3 – Proficient                                                                                                                                                                                                                                                   | 2 - Basic                                                                                                                                                                                                                                | 1 – Below Basic                                                                                                                              | 0 – No Evidence                                                                                      |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Produce inverse    | Can extend thinking                                                                                                                                                                                                                                                                      | Compose functions to verify if                                                                                                                                                                                                                                   | Compose functions to verify if                                                                                                                                                                                                           | Given a simple function, find its                                                                                                            | Little evidence of                                                                                   |
| functions (F.BF.4) | <ul> <li>beyond the standard,<br/>including tasks that<br/>may involve one of the<br/>following:</li> <li>Designing</li> <li>Connecting</li> <li>Synthesizing</li> <li>Applying</li> <li>Justifying</li> <li>Critiquing</li> <li>Analyzing</li> <li>Creating</li> <li>Proving</li> </ul> | one function is the inverse of<br>another function<br>Read values of an inverse<br>function from a graph and table<br><u>Produce an invertible function</u><br>from a non-invertible function by<br>restricting the domain so that<br>the function is one-to-one | one function is the inverse of<br>another function<br>Read values of an inverse<br>function from a graph <u>and</u> table<br><u>Identify a domain</u> that that will<br>produce an invertible function<br>from a non-invertible function | inverse<br>Read values of an inverse<br>function from a graph <u>or</u> table<br><u>Identify if a function is invertible</u><br>from a graph | reasoning or<br>application to<br>solve the problem<br>Does not meet<br>the criteria in a<br>level 1 |

F.BF.4 Find inverse functions.

b. (+) Verify by composition that one function is the inverse of another.

c. (+) Read values of an inverse function from a graph or a table, given that the function has an inverse.

d. (+) Produce an invertible function from a non-invertible function by restricting the domain.

### **Sample Problems**

Given the table below, find  $f^{-1}(4)$ 

Show that each function is the inverse of the other:

f(x) = 4x - 7 and  $g(x) = \frac{x + 7}{4}$ .

Given  $f(x) = x^2 - 10x + 15$ , restrict the domain so that the function is invertible and then find its inverse function.

Pre-Calculus – Functions

# Instructional Focus: Graph and interpret rational functions

|                                                                                                                                                                                                                                                                | 4 – Mastery                                                                                                                     | 3 – Proficient                                                                                                                                                                                                                                      | 2 - Basic                                                                                                                                                                    | 1 – Below Basic                                                                                                                                                                                                           | 0 – No Evidence                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identify key features of<br>graphs (F.IF.7)<br>The concentration C (in mg/dl),<br>of a certain prescription drug<br>in a person's bloodstream is<br>determined using the rational<br>function:<br>$C(t) = \frac{50t}{t^2 + 25}$ where t is the time (in hours) | 4 – Mastery<br>Meets <u>all</u> of the<br>criteria in a Level 3<br>Justify solutions<br>and critique the<br>reasoning of others | 3 – Proficient<br>Graph rational functions, given<br>the model, and interpret all<br>related key features of a graph <u>in</u><br><u>context of a real world</u><br><u>situation</u> .<br>• zeros<br>• asymptotes<br>• intercepts<br>• end behavior | 2 - Basic<br>Graph rational functions, given<br>the model, and identify all<br>related key features of a graph.<br>• zeros<br>• asymptotes<br>• intercepts<br>• end behavior | 1 - Below BasicGiven the graphs of rational,<br>exponential, logarithmic and<br>trigonometric functions, and<br>identify all related key features<br>of a graph.• zeros<br>• asymptotes<br>• intercepts<br>• end behavior | <ul> <li>0 - No Evidence</li> <li>Little evidence of<br/>reasoning or<br/>application to<br/>solve the problem</li> <li>Does not meet<br/>the criteria in a<br/>level 1</li> </ul> |
| tain prescription drug<br>son's bloodstream is<br>ined using the rational<br>n:<br>$\frac{50t}{2^2+25}$<br>is the time (in hours)<br>king the prescription<br>the equation of the                                                                              | and critique the                                                                                                                | context of a real world<br>situation.<br>• zeros<br>• asymptotes<br>• intercepts                                                                                                                                                                    | <ul> <li>zeros</li> <li>asymptotes</li> <li>intercepts</li> </ul>                                                                                                            | identify all related key features<br>of a graph.                                                                                                                                                                          | solve the problem<br>Does not meet<br>the criteria in a                                                                                                                            |
| norizontal asymptote for the<br>graph of the function? What<br>does this value (and the fact<br>that it is an asymptote)<br>represent in the context of this<br>problem?                                                                                       |                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                              |                                                                                                                                                                                                                           |                                                                                                                                                                                    |

#### Pre-Calculus – Functions

F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. 🖈

d. (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.